AI系统的可解释性存在欺骗可能
源 / 新财网    文 / 新财网    2025年07月31日 09时34分

  德国人工智能研究中心(DFKI)研究团队在日前召开的国际机器学习大会上报告称,在可解释人工智能(AI)领域,“X-hacking”是一个此前被普遍忽视的风险,并呼吁批判性和反思性地使用自动化机器学习(AutoML)工具。

  如果AI系统作出了正确预测,但却以完全不同的方式解释其得出的这些结果,会发生什么?DFKI数据科学团队介绍了“X-hacking”给AI可信度带来结构性风险的研究成果。

  X-hacking一词源于统计学中的P-hacking。所谓P-hacking指的是研究人员可通过一些数据操作技巧,在统计学上得出一个有显著意义的结果,即使这个结果实际上并无意义。这相当于一种数据篡改,可能会导致发布假阳性结果。

  相应的X-hacking描述了两种核心机制:一是Cherry-picking,即从众多同样优秀的模型中,精心挑选出解释能力最强、最能支持预期结果的模型;二是定向搜索,AutoML系统不仅能优化预测性能,还能精准地找到具有特定解释模式的模型。但这里面存在的风险往往被低估。

  即使模型得出的结果几乎相同,所谓的特征重要性也可能存在巨大差异。这在医学研究或社会科学等应用领域尤为敏感,因为在这些领域,可解释的模型通常构成关键决策的基础。

  AutoML代表了开发、选择和优化机器学习模型的自动化流程。软件工具接管了许多以前只有经验丰富的机器学习工程师才能完成的任务,例如选择合适的模型架构、数据预处理和超参数优化等。在医学、工业或社会研究等数据密集型领域,AutoML有望实现更快的开发速度、更低的进入门槛和可重复的结果。

  然而,这种自动化使得人们难以理解模型决策的制定方式,这是可解释AI的一个关键问题。因此,DFKI研究团队建议,使用AutoML的学科应该意识到方法的风险,而不仅仅只是信任软件。

网友讨论
还可以输入 200 个字符
热门评论

建议及投诉热线010-85869906

广告刊登热线010-85862238

  • 关注官方微信

  • 关注官方微信

中国人民银行 | 中国银行业监督管理委员会 | 中国保险监督管理委员会 | 中国证券业监督管理委员会 | 路透社 | 华尔街日报 | FT中文网 | 中国互联网金融企业家俱乐部(ECIF) | 工业和信息化部域名信息备案管理系统
Copyright © 2008-2030 北京大白熊网络信息有限公司 京ICP备16038172号-1 all rights reserved本网站所刊部分稿件为网络转载,若有侵权请您及时联系我们,我们会及时删除,本网站对所转载内容不承担任何的责任,请网民对相关内容的真实性自行判断。
账号登录
记住密码
账号注册
账号注册

*昵       称

*输入密码

*确认密码

*姓       名

*电子邮箱

*国家地区

*省       份

*出生年份

*性       别  男          女

*从事职业

*从事行业

请您留下正确的联络方式,以便我们能够及时与您取得联系

*手机号码

填写您要订阅的邮件
  •   我愿意接受有关新财网的新功能或活动的信息
  •   我愿意接受有关其他网站和产品的新功能或活动的信息
  •   我愿意接受第三方服务供应商的特别优惠的信息